Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria

نویسندگان

  • Yi-Chin Candace Tsai
  • Maria Claribel Lapina
  • Shashi Bhushan
  • Oliver Mueller-Cajar
چکیده

Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) is responsible for almost all biological CO2 assimilation, but forms inhibited complexes with its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. The distantly related AAA+ proteins rubisco activase and CbbX remodel inhibited rubisco complexes to effect inhibitor release in plants and α-proteobacteria, respectively. Here we characterize a third class of rubisco activase in the chemolithoautotroph Acidithiobacillus ferrooxidans. Two sets of isoforms of CbbQ and CbbO form hetero-oligomers that function as specific activases for two structurally diverse rubisco forms. Mutational analysis supports a model wherein the AAA+ protein CbbQ functions as motor and CbbO is a substrate adaptor that binds rubisco via a von Willebrand factor A domain. Understanding the mechanisms employed by nature to overcome rubisco's shortcomings will increase our toolbox for engineering photosynthetic carbon dioxide fixation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Diverse AAA+ Machines that Repair Inhibited Rubisco Active Sites

Gaseous carbon dioxide enters the biosphere almost exclusively via the active site of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This highly conserved catalyst has an almost universal propensity to non-productively interact with its substrate ribulose 1,5-bisphosphate, leading to the formation of dead-end inhibited complexes. In diverse autotrophic organisms this tend...

متن کامل

Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans.

The cbbL cbbS and cbbM genes of Thiobacillus denitrificans, encoding form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), respectively, were found to complement a RubisCO-negative mutant of Rhodobacter sphaeroides to autotrophic growth. Endogenous T. denitrificans promoters were shown to function in R. sphaeroides, resulting in high levels of cbbL cbbS and cbbM expressi...

متن کامل

Two residues of rubisco activase involved in recognition of the Rubisco substrate.

Rubisco activase is an AAA(+) protein, a superfamily with members that use a "Sensor 2" domain for substrate recognition. To determine whether the analogous domain of activase is involved in recognition of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39), two chimeric activases were constructed, interchanging a Sensor 2-containing region between activases from spinach and ...

متن کامل

Analysis of the cbbXYZ operon in Rhodobacter sphaeroides.

Three genes, cbbX, cbbY, and cbbZ were found downstream from the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes of Rhodobacter sphaeroides. As in chemoautotrophic bacteria, cbbZ was shown to encode phosphoglycolate phosphatase (PGP), whereas the identities of cbbX and cbbY are not known. To determine the physiological function of the cbbXYZ gene products, we constructed ...

متن کامل

Characterization of the heterooligomeric red-type rubisco activase from red algae.

The photosynthetic CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) is inhibited by nonproductive binding of its substrate ribulose-1,5-bisphosphate (RuBP) and other sugar phosphates. Reactivation requires ATP-hydrolysis-powered remodeling of the inhibited complexes by diverse molecular chaperones known as rubisco activases (Rcas). Eukaryotic phytoplankton of the red ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015